Catalogue 4.1 - STAUFF Hose and Connectors

102 www.stauff.com Hose Type Indentification Symbols  2SNK  2SN  4SP  4SH Checking the operability of crimped hose connectors by measuring the reduction of the nipple diameter Fig. 1: Excessive crimping, maximum reduction of nipple diameter exceeded Fig. 1: The inside nipple diameter is reduced excessively in the sealing zone through the crimp dimension, which is too tight. This error might result in premature failure of the hose line. The crimp diameter must be increased by several tenths of a millimeter! ATTENTION: This crimped connector is not functional. Fig. 2: Maximum reduction of nipple diameter reached Fig. 2: This illustration shows the maximum permissible reduction of the inside nipple. The crimp diameter should not be reduced any further, since otherwise there might be the risk of a premature failure of the hose line! Fig. 3: Ideal reduction of nipple diameter Fig. 3: The perfect reduction of the nipple diameter has been reached. The crimp diameter should not be changed any more. It must, however, be checked prior to any change of the hose batch. The reached crimp dimension will correspond to the standard crimp dimension as determined from the press dimension table. Fig. 4: Minimum reduction of nipple diameter Fig. 4: This illustration shows the minimum permissible reduction of the inside nipple diameter. In this case, it is still possible to reduce the crimping diameter by a few tenth of a millimeter! Fig. 5: No reduction of nipple diameter Fig. 5: Crimping did not cause any reduction of the inside nipple diameter. The crimping diameter is too large. There is a risk of a leak or of the hose slipping off the crimped connector. It is necessary to decrease the crimping diameter by several tenths of a millimeter! ATTENTION: This crimped connector is not functional. Technical Appendix Swaging Guide Insert bore collapse measurement and control recommendations. Why? Manufacturers use different materials, engineering tolerances and design concepts to other manufacturers making products incompatible with each other so “NEVER MIX AND MATCH”. Because there are no international specifications for the design of the connectors insert tail and ferrule! This is for the individual manufacturers to design and produce. The tolerances for hoses within the International specifications are very broad based. Manufacturers who have an integrated approach and have the technical ability and production controls in place will adopt much narrower tolerances within the International specifications for a higher quality and consistency of production. STAUFF-Flex provides a compatible package of hose, connectors and ferrules that have been qualified through extensive testing programs in house. STAUFF-Flex has full technical back-up and support given by the manufacturer, whilst being able to correctly specify hose and assemblies for varied applications within industry. What is insert bore collapse? It is the localised reduction or collapse of the diameter of the insert in the effective seal area of the connector due to the compression force applied on the hose wall during the swaging operation. The performance of a hose assembly, in terms of its resistance to blow-off and leakage, is mostly determined by the level of hose wall and tube compression achieved upon swaging. Insert bore collapse gives an indirect indication of the level of hose wall compression. It also can function like a safety valve for preventing excessive hose wall and tube compression which may lead to premature hose assembly failure at the connector. A very high insert collapse indicates an over-swaged condition with excessive tube and hose wall compression which may introduce the risk of premature hose assembly failures at the connector. Also an excessive reduction in bore size can result in additional pressure drops and losses at the area of restriction along the fluid flow path thus reducing the efficiency of the hydraulic circuit. A very low insert collapse may be indicative of low tube and hose wall compression which can increase the risks of leakage at the connectors and cause blow-off, especially when hose has been in service. Proper measurement and effective control of insert bore collapse during hose assembly production can help achieve consistency in product quality and performance plus can significantly reduce the risk of premature hose assembly failure. How to measure and use control pin Collapse can be measured simply by checking the insert bore of the swaged connector with the appropriate control pin indicated for each hose nominal size. Such measurements can also be made with suitable mechanical or electronic bore callipers. Each nominal size has its own recommended minimum and maximum values with the swage diameter giving what is the best collapse for that hose assembly. However, on rare occasions, combined tolerances on hose, ferrules and inserts may generate an out of standard collapse. It is therefore recommended to check the bore collapse by use of the control pins as follows. In case outside of standard results When isolated production lots can have a tolerance combination giving insert bore collapse values out of the recommended range, modification of the swaging diameters around the indicated value is allowed but only by a few tenths of a millimetre +. Z ( 1 : 1 ) Z Bearbeitung,Vervielfältigung oder Weitergabe dieser Unterlage Verwertung oder Mitteilung ihres Inhaltes ist, ohne unsere ausdrücklich zugestandene Zustimmung, nicht gestattet. Z Z ( 1 : 1 ) Z Bearbeitung,Vervielfältigung oder Weitergabe dieser Unterlage Verwertung oder Mitteilung ihres Inhaltes ist, ohne unsere ausdrücklich zugestandene Zustimmung, nicht gestattet. Z Z ( 1 : 1 ) Z Bearbeitung,Vervielfältigung oder Weitergabe dieser Unterlage Verwertung oder Mitteilung ihres Inhaltes ist, ohne unsere ausdrücklich zugestandene Zustimmung, nicht gestattet. Z Z ( 1 : 1 ) Z Bearbeitung,Vervielfältigung oder Weitergabe dieser Unterlage Verwertung oder Mitteilung ihres Inhaltes ist, ohne unsere ausdrücklich zugestandene Zustimmung, nicht gestattet. Z Z ( 1 : 1 ) Z Bearbeitung,Vervielfältigung oder Weitergabe dieser Unterlage Verwertung oder Mitteilung ihres Inhaltes ist, ohne unsere ausdrücklich zugestandene Zustimmung, nicht gestattet. Z Z ( 1 : 1 ) Z Bearbeitung,Vervielfältigung oder Weitergabe dieser Unterlage Verwertung oder Mitteilung ihres Inhaltes ist, ohne unsere ausdrücklich zugestandene Zustimmung, nicht gestattet. Z Z ( 1 : 1 ) Z Bearbeitung,Vervielfältigung oder Weitergabe dieser Unterlage Verwertung oder Mitteilung ihres Inhaltes ist, ohne unsere ausdrücklich zugestandene Zustimmung, nicht gestattet. Z Z ( 1 : 1 ) Z Bearbeitung,Vervielfältigung oder Weitergabe dieser Unterlage Verwertung oder Mitteilung ihres Inhaltes ist, ohne unsere ausdrücklich zugestandene Zustimmung, nicht gestattet. Z A-A ( 1 : 1 ) Z ( 1 : 1 ) A A Z Bearbeitung,Vervielfältigung oder Weitergabe dieser Unterlage Verwertung oder Mitteilung ihres Inhaltes ist, ohne unsere ausdrücklich zugestandene Zustimmung, nicht gestattet. Z A-A ( 1 : 1 ) Z ( 1 : 1 ) A A Z Bearbeitung,Vervielfältigung oder Weitergabe dieser Unterlage Verwertung oder Mitteilung ihres Inhaltes ist, ohne unsere ausdrücklich zugestandene Zustimmung, nicht gestattet. Z Hose type Working Pressure (bar) Skive Non-Skive Nominal Dia Ferrule Item No. Ferrule Designation Crimp Dia (Reference) (mm) Skive length External (mm) Skive length Internal (mm) DN Dash Inch mm  2SNK 450 Non-Skive 06 -04 1/4 6.6 2012031318 HF-1000-06-W3 16.3 - -  2SNK 385 Non-Skive 10 -06 3/8 9.9 2012031319 HF-1000-10-W3 20.9 - -  2SNK 350 Non-Skive 12 -08 1/2 13.0 2012031320 HF-1000-12-W3 24.6 - -  2SNK 290 Non-Skive 16 -10 5/8 16.4 6100060738 HF-1000-16-W3 28.5 - -  2SNK 280 Non-Skive 19 -12 3/4 19.5 2012031321 HF-1000-19-W3 31.7 - -  2SNK 200 Non-Skive 25 -16 1 26.0 2012031442 HF-1000-25-W3 40.4 - -  2SNK 175 Non-Skive 31 -20 1-1/4 32.5 2012032237 HF-1000-31-W3 47.1 - -  2SN 90 Non-Skive 38 -24 1-1/2 38.7 6100030769 HF-1000-38-W3 58.9 - -  2SN 80 Non-Skive 51 -32 2 51.1 6100030740 HF-1000-51-W3 71.3 - -  4SP 445 Skive 10 -06 3/8 9.5 6100058569 HF-3000-10-W3 22.3 28 -  4SP 415 Skive 12 -08 1/2 12.7 6100034501 HF-3000-12-W3 25.2 28 -  4SP 350 Skive 16 -10 5/8 15.9 6100060748 HF-3000-16-W3 29.0 29 -  4SP 350 Skive 19 -12 3/4 19.0 6100060749 HF-3000-19-W3 34.2 37 -  4SP 320 Skive 25 -16 1 25.4 6100059977 HF-3000-25-W3 41.0 44 -  4SP 210 Skive 31 -20 1-1/4 31.8 6100095083 HF-3000-31-W3 52.2 49 -  4SP 185 Skive 38 -24 1-1/2 38.1 6100032578 HF-3000-38-W3 60.3 55 -  4SP 165 Skive 51 -32 2 50.8 6100060750 HF-3000-51-W3 74.0 62 -  4SH 420 Skive 19 -12 3/4 19.0 6100060749 HF-3000-19-W3 35.1 37 -  4SH 380 Skive 25 -16 1 25.4 6100059977 HF-3000-25-W3 42.0 44 -  4SH 345 Skive 31 -20 1-1/4 31.8 6100095083 HF-3000-31-W3 50.1 49 -  4SH 420 Interlock 19 -12 3/4 19.0 6100095095 HF-5002-19-W3 35.2 41 13.2  4SH 380 Interlock 25 -16 1 25.4 6100095096 HF-5002-25-W3 41.8 47 13  4SH 345 Interlock 31 -20 1-1/4 31.8 6100095097 HF-5002-31-W3 50.7 51 16

RkJQdWJsaXNoZXIy ODU4NjY4